Nuprl Lemma : rec-value-evalall

[x:Base]. uiff((evalall(x))↓;x ∈ rec-value())


Proof




Definitions occuring in Statement :  rec-value: rec-value() has-value: (a)↓ evalall: evalall(t) uiff: uiff(P;Q) uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  has-value: (a)↓ prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] evalall: evalall(t) nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q nat_plus: + b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  bfalse: ff btrue: tt guard: {T} pi2: snd(t) ext-eq: A ≡ B outl: outl(x) outr: outr(x) atomic-values: atomic-values() Value: Value() is-atomic: is-atomic(x) assert: b true: True le: A ≤ B co-value-height: co-value-height(t) rec-value-height: rec-value-height(v) unit: Unit bool: 𝔹
Lemmas referenced :  istype-base rec-value_wf has-value_wf_base nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_subtype_base base_wf fun_exp0_lemma strictness-apply bottom_diverge decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma fun_exp_unroll_1 has-value-implies-dec-ispair-2 bfalse_wf ifthenelse_wf atomic-values_wf b-union_wf rec-value-ext has-value-implies-dec-isinl-2 has-value-implies-dec-isinr-2 btrue_wf istype-assert is-atomic_wf istype-nat false_wf add-is-int-iff is-exception_wf subtract-1-ge-0 istype-le int_term_value_add_lemma itermAdd_wf rec-value-height_wf istype-less_than istype-void istype-int full-omega-unsat atomic-values_subtype_base atomic-values-evalall
Rules used in proof :  Error :inhabitedIsType,  Error :isectIsTypeImplies,  Error :isect_memberEquality_alt,  independent_pairEquality productElimination sqequalBase Error :equalityIstype,  axiomSqleEquality hypothesisEquality baseClosed closedConclusion baseApply thin isectElimination extract_by_obid Error :universeIsType,  equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution independent_pairFormation cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution compactness setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination applyEquality unionElimination because_Cache dependent_set_memberEquality callbyvalueCallbyvalue callbyvalueReduce imageMemberEquality Error :dependent_pairEquality_alt,  instantiate universeEquality productEquality unionEquality Error :inlEquality_alt,  Error :inrEquality_alt,  Error :dependent_set_memberEquality_alt,  Error :lambdaFormation_alt,  promote_hyp pointwiseFunctionality sqleReflexivity divergentSqle applyLambdaEquality equalityElimination imageElimination hypothesis_subsumption Error :functionIsTypeImplies,  Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  approximateComputation

Latex:
\mforall{}[x:Base].  uiff((evalall(x))\mdownarrow{};x  \mmember{}  rec-value())



Date html generated: 2019_06_20-PM-01_54_29
Last ObjectModification: 2019_01_11-PM-03_12_31

Theory : rec_values


Home Index