Nuprl Lemma : rec-value-evalall
∀[x:Base]. uiff((evalall(x))↓;x ∈ rec-value())
Proof
Definitions occuring in Statement : 
rec-value: rec-value()
, 
has-value: (a)↓
, 
evalall: evalall(t)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
has-value: (a)↓
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
evalall: evalall(t)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
guard: {T}
, 
pi2: snd(t)
, 
ext-eq: A ≡ B
, 
outl: outl(x)
, 
outr: outr(x)
, 
atomic-values: atomic-values()
, 
Value: Value()
, 
is-atomic: is-atomic(x)
, 
assert: ↑b
, 
true: True
, 
le: A ≤ B
, 
co-value-height: co-value-height(t)
, 
rec-value-height: rec-value-height(v)
, 
unit: Unit
, 
bool: 𝔹
Lemmas referenced : 
istype-base, 
rec-value_wf, 
has-value_wf_base, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_subtype_base, 
base_wf, 
fun_exp0_lemma, 
strictness-apply, 
bottom_diverge, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
fun_exp_unroll_1, 
has-value-implies-dec-ispair-2, 
bfalse_wf, 
ifthenelse_wf, 
atomic-values_wf, 
b-union_wf, 
rec-value-ext, 
has-value-implies-dec-isinl-2, 
has-value-implies-dec-isinr-2, 
btrue_wf, 
istype-assert, 
is-atomic_wf, 
istype-nat, 
false_wf, 
add-is-int-iff, 
is-exception_wf, 
subtract-1-ge-0, 
istype-le, 
int_term_value_add_lemma, 
itermAdd_wf, 
rec-value-height_wf, 
istype-less_than, 
istype-void, 
istype-int, 
full-omega-unsat, 
atomic-values_subtype_base, 
atomic-values-evalall
Rules used in proof : 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
Error :isect_memberEquality_alt, 
independent_pairEquality, 
productElimination, 
sqequalBase, 
Error :equalityIstype, 
axiomSqleEquality, 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
thin, 
isectElimination, 
extract_by_obid, 
Error :universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
compactness, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
applyEquality, 
unionElimination, 
because_Cache, 
dependent_set_memberEquality, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
imageMemberEquality, 
Error :dependent_pairEquality_alt, 
instantiate, 
universeEquality, 
productEquality, 
unionEquality, 
Error :inlEquality_alt, 
Error :inrEquality_alt, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaFormation_alt, 
promote_hyp, 
pointwiseFunctionality, 
sqleReflexivity, 
divergentSqle, 
applyLambdaEquality, 
equalityElimination, 
imageElimination, 
hypothesis_subsumption, 
Error :functionIsTypeImplies, 
Error :lambdaEquality_alt, 
Error :dependent_pairFormation_alt, 
approximateComputation
Latex:
\mforall{}[x:Base].  uiff((evalall(x))\mdownarrow{};x  \mmember{}  rec-value())
Date html generated:
2019_06_20-PM-01_54_29
Last ObjectModification:
2019_01_11-PM-03_12_31
Theory : rec_values
Home
Index