Nuprl Lemma : rec-value_wf
rec-value() ∈ Type
Proof
Definitions occuring in Statement : 
rec-value: rec-value()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
rec-value: rec-value()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
co-value_wf, 
has-value_wf-partial, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
co-value-height_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality
Latex:
rec-value()  \mmember{}  Type
Date html generated:
2016_05_14-PM-03_20_51
Last ObjectModification:
2015_12_26-PM-02_27_00
Theory : rec_values
Home
Index