Nuprl Lemma : co-value-height_wf

[t:co-value()]. (co-value-height(t) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  co-value-height: co-value-height(t) co-value: co-value() partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] co-value: co-value() b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) co-value-height: co-value-height(t) atomic-values: atomic-values() Value: Value() has-value: (a)↓ top: Top is-atomic: is-atomic(x) assert: b bfalse: ff false: False outl: outl(x) outr: outr(x) le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q
Lemmas referenced :  fix_wf_corec-partial1 nat_wf set-value-type le_wf istype-int int-value-type nat-mono b-union_wf atomic-values_wf istype-universe continuous-monotone-co-value partial_wf co-value_wf has-value_wf_base is-exception_wf istype-top istype-void nat-partial-nat istype-false istype-le add-wf-partial-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality Error :lambdaEquality_alt,  closedConclusion natural_numberEquality hypothesisEquality productEquality because_Cache unionEquality instantiate universeEquality Error :isect_memberEquality_alt,  imageElimination productElimination unionElimination equalityElimination Error :universeIsType,  Error :functionIsType,  applyEquality setElimination rename ispairCases divergentSqle baseClosed axiomSqEquality Error :inhabitedIsType,  Error :isectIsTypeImplies,  voidElimination isinlCases isinrCases Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :lambdaFormation_alt

Latex:
\mforall{}[t:co-value()].  (co-value-height(t)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2019_06_20-PM-01_54_19
Last ObjectModification: 2018_10_17-PM-00_31_48

Theory : rec_values


Home Index