Nuprl Lemma : rec-value-ext

rec-value() ≡ atomic-values() ⋃ (rec-value() × rec-value()) ⋃ (rec-value() rec-value())


Proof




Definitions occuring in Statement :  rec-value: rec-value() atomic-values: atomic-values() b-union: A ⋃ B ext-eq: A ≡ B product: x:A × B[x] union: left right
Definitions unfolded in proof :  ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] rec-value: rec-value() guard: {T} uimplies: supposing a b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) btrue: tt bfalse: ff co-value-height: co-value-height(t) has-value: (a)↓ all: x:A. B[x] implies:  Q nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: outl: outl(x) outr: outr(x) atomic-values: atomic-values() rec-value-height: rec-value-height(v) Value: Value() top: Top is-atomic: is-atomic(x) assert: b false: False
Lemmas referenced :  top_wf is-exception_wf has-value_wf_base rec-value-height_wf subtype_rel_union subtype_rel_product subtype_rel_self subtype_rel_b-union set-value-type has-value_wf-partial int-value-type value-type-has-value int_subtype_base le_wf set_subtype_base nat_wf subtype_partial_sqtype_base co-value-height_wf add-wf-partial-nat bfalse_wf ifthenelse_wf btrue_wf subtype_rel_weakening co-value_wf ext-eq_inversion co-value-ext atomic-values_wf b-union_wf rec-value_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaEquality cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin productEquality unionEquality setElimination rename hypothesis_subsumption independent_isectElimination hypothesisEquality applyEquality sqequalRule imageElimination productElimination unionElimination equalityElimination imageMemberEquality dependent_pairEquality instantiate universeEquality baseClosed equalityTransitivity equalitySymmetry because_Cache independent_pairEquality dependent_set_memberEquality callbyvalueAdd dependent_functionElimination independent_functionElimination intEquality natural_numberEquality inlEquality inrEquality lambdaFormation introduction axiomSqleEquality addEquality ispairCases divergentSqle isect_memberFormation sqequalAxiom isect_memberEquality voidElimination voidEquality isinlCases isinrCases sqleReflexivity

Latex:
rec-value()  \mequiv{}  atomic-values()  \mcup{}  (rec-value()  \mtimes{}  rec-value())  \mcup{}  (rec-value()  +  rec-value())



Date html generated: 2016_05_14-PM-03_20_59
Last ObjectModification: 2016_01_14-PM-08_01_05

Theory : rec_values


Home Index