Nuprl Lemma : rec-value-ext
rec-value() ≡ atomic-values() ⋃ (rec-value() × rec-value()) ⋃ (rec-value() + rec-value())
Proof
Definitions occuring in Statement : 
rec-value: rec-value()
, 
atomic-values: atomic-values()
, 
b-union: A ⋃ B
, 
ext-eq: A ≡ B
, 
product: x:A × B[x]
, 
union: left + right
Definitions unfolded in proof : 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rec-value: rec-value()
, 
guard: {T}
, 
uimplies: b supposing a
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
btrue: tt
, 
bfalse: ff
, 
co-value-height: co-value-height(t)
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
outl: outl(x)
, 
outr: outr(x)
, 
atomic-values: atomic-values()
, 
rec-value-height: rec-value-height(v)
, 
Value: Value()
, 
top: Top
, 
is-atomic: is-atomic(x)
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
top_wf, 
is-exception_wf, 
has-value_wf_base, 
rec-value-height_wf, 
subtype_rel_union, 
subtype_rel_product, 
subtype_rel_self, 
subtype_rel_b-union, 
set-value-type, 
has-value_wf-partial, 
int-value-type, 
value-type-has-value, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
nat_wf, 
subtype_partial_sqtype_base, 
co-value-height_wf, 
add-wf-partial-nat, 
bfalse_wf, 
ifthenelse_wf, 
btrue_wf, 
subtype_rel_weakening, 
co-value_wf, 
ext-eq_inversion, 
co-value-ext, 
atomic-values_wf, 
b-union_wf, 
rec-value_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
unionEquality, 
setElimination, 
rename, 
hypothesis_subsumption, 
independent_isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
imageElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
imageMemberEquality, 
dependent_pairEquality, 
instantiate, 
universeEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_pairEquality, 
dependent_set_memberEquality, 
callbyvalueAdd, 
dependent_functionElimination, 
independent_functionElimination, 
intEquality, 
natural_numberEquality, 
inlEquality, 
inrEquality, 
lambdaFormation, 
introduction, 
axiomSqleEquality, 
addEquality, 
ispairCases, 
divergentSqle, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isinlCases, 
isinrCases, 
sqleReflexivity
Latex:
rec-value()  \mequiv{}  atomic-values()  \mcup{}  (rec-value()  \mtimes{}  rec-value())  \mcup{}  (rec-value()  +  rec-value())
Date html generated:
2016_05_14-PM-03_20_59
Last ObjectModification:
2016_01_14-PM-08_01_05
Theory : rec_values
Home
Index