Nuprl Lemma : co-value-ext

co-value() ≡ atomic-values() ⋃ (co-value() × co-value()) ⋃ (co-value() co-value())


Proof




Definitions occuring in Statement :  co-value: co-value() atomic-values: atomic-values() b-union: A ⋃ B ext-eq: A ≡ B product: x:A × B[x] union: left right
Definitions unfolded in proof :  co-value: co-value() uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] uimplies: supposing a
Lemmas referenced :  corec-ext b-union_wf atomic-values_wf continuous-monotone-co-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesis productEquality hypothesisEquality unionEquality universeEquality independent_isectElimination

Latex:
co-value()  \mequiv{}  atomic-values()  \mcup{}  (co-value()  \mtimes{}  co-value())  \mcup{}  (co-value()  +  co-value())



Date html generated: 2016_05_14-PM-03_20_44
Last ObjectModification: 2015_12_26-PM-02_27_01

Theory : rec_values


Home Index