Nuprl Lemma : co-value-ext
co-value() ≡ atomic-values() ⋃ (co-value() × co-value()) ⋃ (co-value() + co-value())
Proof
Definitions occuring in Statement : 
co-value: co-value()
, 
atomic-values: atomic-values()
, 
b-union: A ⋃ B
, 
ext-eq: A ≡ B
, 
product: x:A × B[x]
, 
union: left + right
Definitions unfolded in proof : 
co-value: co-value()
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
corec-ext, 
b-union_wf, 
atomic-values_wf, 
continuous-monotone-co-value
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
productEquality, 
hypothesisEquality, 
unionEquality, 
universeEquality, 
independent_isectElimination
Latex:
co-value()  \mequiv{}  atomic-values()  \mcup{}  (co-value()  \mtimes{}  co-value())  \mcup{}  (co-value()  +  co-value())
Date html generated:
2016_05_14-PM-03_20_44
Last ObjectModification:
2015_12_26-PM-02_27_01
Theory : rec_values
Home
Index