Nuprl Lemma : rec-value-height_wf

[v:rec-value()]. (rec-value-height(v) ∈ ℕ)


Proof




Definitions occuring in Statement :  rec-value-height: rec-value-height(v) rec-value: rec-value() nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rec-value: rec-value() uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] rec-value-height: rec-value-height(v)
Lemmas referenced :  termination nat_wf set-value-type le_wf int-value-type rec-value_wf co-value-height_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[v:rec-value()].  (rec-value-height(v)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-PM-03_20_53
Last ObjectModification: 2015_12_26-PM-02_26_59

Theory : rec_values


Home Index