Nuprl Lemma : rec-value-height_wf
∀[v:rec-value()]. (rec-value-height(v) ∈ ℕ)
Proof
Definitions occuring in Statement : 
rec-value-height: rec-value-height(v)
, 
rec-value: rec-value()
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rec-value: rec-value()
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rec-value-height: rec-value-height(v)
Lemmas referenced : 
termination, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
rec-value_wf, 
co-value-height_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[v:rec-value()].  (rec-value-height(v)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_14-PM-03_20_53
Last ObjectModification:
2015_12_26-PM-02_26_59
Theory : rec_values
Home
Index