Nuprl Lemma : rec-value-height_wf
∀[v:rec-value()]. (rec-value-height(v) ∈ ℕ)
Proof
Definitions occuring in Statement :
rec-value-height: rec-value-height(v)
,
rec-value: rec-value()
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rec-value: rec-value()
,
uimplies: b supposing a
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rec-value-height: rec-value-height(v)
Lemmas referenced :
termination,
nat_wf,
set-value-type,
le_wf,
int-value-type,
rec-value_wf,
co-value-height_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
setElimination,
thin,
rename,
lemma_by_obid,
isectElimination,
hypothesis,
independent_isectElimination,
sqequalRule,
intEquality,
lambdaEquality,
natural_numberEquality,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[v:rec-value()]. (rec-value-height(v) \mmember{} \mBbbN{})
Date html generated:
2016_05_14-PM-03_20_53
Last ObjectModification:
2015_12_26-PM-02_26_59
Theory : rec_values
Home
Index