Nuprl Lemma : equiv_rel_iff
EquivRel(ℙ;A,B.A ⇐⇒ B)
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
prop: ℙ, 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
prop: ℙ, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
trans: Trans(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :universeIsType, 
sqequalHypSubstitution, 
hypothesisEquality, 
universeEquality, 
cut, 
hypothesis, 
productElimination, 
thin, 
independent_functionElimination, 
because_Cache, 
sqequalRule, 
Error :productIsType, 
Error :functionIsType, 
Error :inhabitedIsType, 
independent_pairFormation, 
Error :lambdaFormation_alt
Latex:
EquivRel(\mBbbP{};A,B.A  \mLeftarrow{}{}\mRightarrow{}  B)
Date html generated:
2019_06_20-PM-00_29_01
Last ObjectModification:
2018_09_29-PM-11_16_38
Theory : rel_1
Home
Index