Nuprl Lemma : equiv_rel_squash2

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  ((↓EquivRel(T;x,y.E[x;y]))  EquivRel(T;x,y.↓E[x;y]))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) and: P ∧ Q cand: c∧ B all: x:A. B[x] squash: T so_apply: x[s1;s2] prop: so_lambda: λ2y.t[x; y] guard: {T}
Lemmas referenced :  squash_wf equiv_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  sqequalHypSubstitution imageElimination productElimination thin sqequalRule imageMemberEquality hypothesisEquality baseClosed hypothesis because_Cache independent_pairFormation Error :universeIsType,  extract_by_obid isectElimination applyEquality Error :lambdaEquality_alt,  Error :inhabitedIsType,  dependent_functionElimination independent_pairEquality Error :functionIsTypeImplies,  Error :functionIsType,  universeEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mdownarrow{}EquivRel(T;x,y.E[x;y]))  {}\mRightarrow{}  EquivRel(T;x,y.\mdownarrow{}E[x;y]))



Date html generated: 2019_06_20-PM-00_28_50
Last ObjectModification: 2019_03_18-PM-07_09_34

Theory : rel_1


Home Index