Step
*
1
of Lemma
uorder_functionality_wrt_iff
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [R'] : T ⟶ T ⟶ ℙ
4. ∀[x,y:T].  (R[x;y] 
⇐⇒ R'[x;y])
5. UniformlyRefl(T;x,y.R[x;y]) ∧ UniformlyTrans(T;x,y.R[x;y]) ∧ UniformlyAntiSym(T;x,y.R[x;y])
⊢ UniformlyRefl(T;x,y.R'[x;y]) ∧ UniformlyTrans(T;x,y.R'[x;y]) ∧ UniformlyAntiSym(T;x,y.R'[x;y])
BY
{ (RWO "4<" 0 THEN Auto) }
Latex:
Latex:
1.  [T]  :  Type
2.  [R]  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
3.  [R']  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
4.  \mforall{}[x,y:T].    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y])
5.  UniformlyRefl(T;x,y.R[x;y])  \mwedge{}  UniformlyTrans(T;x,y.R[x;y])  \mwedge{}  UniformlyAntiSym(T;x,y.R[x;y])
\mvdash{}  UniformlyRefl(T;x,y.R'[x;y])  \mwedge{}  UniformlyTrans(T;x,y.R'[x;y])  \mwedge{}  UniformlyAntiSym(T;x,y.R'[x;y])
By
Latex:
(RWO  "4<"  0  THEN  Auto)
Home
Index