Nuprl Lemma : uorder_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  (R[x;y] ⇐⇒ R'[x;y]))  (UniformOrder(T;x,y.R[x;y]) ⇐⇒ UniformOrder(T;x,y.R'[x;y])))


Proof




Definitions occuring in Statement :  uorder: UniformOrder(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uorder: UniformOrder(T;x,y.R[x; y]) member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  uorder_wf uall_wf iff_wf urefl_functionality_wrt_iff utrans_functionality_wrt_iff iff_weakening_uiff uanti_sym_wf uanti_sym_functionality_wrt_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality productElimination independent_functionElimination promote_hyp because_Cache independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))
    {}\mRightarrow{}  (UniformOrder(T;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  UniformOrder(T;x,y.R'[x;y])))



Date html generated: 2019_06_20-PM-00_29_32
Last ObjectModification: 2018_09_26-AM-11_53_45

Theory : rel_1


Home Index