Nuprl Lemma : urefl_functionality_wrt_iff
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
((∀[x,y:T]. (R[x;y]
⇐⇒ R'[x;y]))
⇒ (UniformlyRefl(T;x,y.R[x;y])
⇐⇒ UniformlyRefl(T;x,y.R'[x;y])))
Proof
Definitions occuring in Statement :
urefl: UniformlyRefl(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
urefl: UniformlyRefl(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
guard: {T}
Lemmas referenced :
uall_wf,
iff_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :isect_memberFormation_alt,
lambdaFormation,
independent_pairFormation,
Error :universeIsType,
hypothesisEquality,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
applyEquality,
hypothesis,
Error :inhabitedIsType,
Error :functionIsType,
universeEquality,
because_Cache,
productElimination,
independent_functionElimination
Latex:
\mforall{}[T:Type]. \mforall{}[R,R':T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
((\mforall{}[x,y:T]. (R[x;y] \mLeftarrow{}{}\mRightarrow{} R'[x;y]))
{}\mRightarrow{} (UniformlyRefl(T;x,y.R[x;y]) \mLeftarrow{}{}\mRightarrow{} UniformlyRefl(T;x,y.R'[x;y])))
Date html generated:
2019_06_20-PM-00_28_44
Last ObjectModification:
2018_09_26-AM-11_46_33
Theory : rel_1
Home
Index