Step
*
of Lemma
rel_exp_monotone
∀n:ℕ. ∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. (R1 => R2
⇒ R1^n => R2^n)
BY
{ InductionOnNat }
1
.....basecase.....
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. (R1 => R2
⇒ R1^0 => R2^0)
2
.....upcase.....
1. n : ℤ
2. [%1] : 0 < n
3. ∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. (R1 => R2
⇒ R1^n - 1 => R2^n - 1)
⊢ ∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. (R1 => R2
⇒ R1^n => R2^n)
Latex:
Latex:
\mforall{}n:\mBbbN{}. \mforall{}[T:Type]. \mforall{}[R1,R2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (R1 => R2 {}\mRightarrow{} rel\_exp(T; R1; n) => rel\_exp(T; R2; n))
By
Latex:
InductionOnNat
Home
Index