Step
*
2
of Lemma
rel_exp_monotone
.....upcase.....
1. n : ℤ
2. [%1] : 0 < n
3. ∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. (R1 => R2
⇒ R1^n - 1 => R2^n - 1)
⊢ ∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. (R1 => R2
⇒ R1^n => R2^n)
BY
{ ((((((Auto THEN RecUnfold `rel_exp` 0) THEN SplitOnConclITE) THEN Auto) THEN All (Unfold `rel_implies`))
THEN All Reduce
)
THEN Auto
) }
Latex:
Latex:
.....upcase.....
1. n : \mBbbZ{}
2. [\%1] : 0 < n
3. \mforall{}[T:Type]. \mforall{}[R1,R2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (R1 => R2 {}\mRightarrow{} rel\_exp(T; R1; n - 1) => rel\_exp(T; R2; n - 1))
\mvdash{} \mforall{}[T:Type]. \mforall{}[R1,R2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (R1 => R2 {}\mRightarrow{} rel\_exp(T; R1; n) => rel\_exp(T; R2; n))
By
Latex:
((((((Auto THEN RecUnfold `rel\_exp` 0) THEN SplitOnConclITE) THEN Auto)
THEN All (Unfold `rel\_implies`)
)
THEN All Reduce
)
THEN Auto
)
Home
Index