Nuprl Lemma : rel_implies_or_left
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  R1 => R1 ∨ R2
Proof
Definitions occuring in Statement : 
rel_or: R1 ∨ R2
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_or: R1 ∨ R2
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
inlFormation, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    R1  =>  R1  \mvee{}  R2
Date html generated:
2019_06_20-PM-00_31_06
Last ObjectModification:
2018_09_26-PM-00_43_07
Theory : relations
Home
Index