Step
*
of Lemma
implies-least-equiv
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ]. R => least-equiv(A;R)
BY
{ (Auto
THEN D 0
THEN Auto
THEN RepUR ``least-equiv`` 0
THEN BLemma `transitive-reflexive-closure-base-case`
THEN Auto) }
1
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. x : A
4. y : A
5. x R y
⊢ x (λx,y. ((R x y) ∨ (R y x))) y
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[R:A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}]. R => least-equiv(A;R)
By
Latex:
(Auto
THEN D 0
THEN Auto
THEN RepUR ``least-equiv`` 0
THEN BLemma `transitive-reflexive-closure-base-case`
THEN Auto)
Home
Index