Step
*
1
of Lemma
rel-exp-add-iff
.....assertion.....
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀a,b:ℕ. ∀x,z:T. ((x R^a + b z)
⇒ (∃y:T. ((x R^a y) ∧ (y R^b z))))
BY
{ (InductionOnNat THEN Auto') }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. b : ℕ
4. x : T
5. z : T
6. x R^0 + b z
⊢ ∃y:T. ((x R^0 y) ∧ (y R^b z))
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. a : ℤ
4. [%1] : 0 < a
5. ∀b:ℕ. ∀x,z:T. ((x R^(a - 1) + b z)
⇒ (∃y:T. ((x R^a - 1 y) ∧ (y R^b z))))
6. b : ℕ
7. x : T
8. z : T
9. x R^a + b z
⊢ ∃y:T. ((x R^a y) ∧ (y R^b z))
Latex:
Latex:
.....assertion.....
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
\mforall{}a,b:\mBbbN{}. \mforall{}x,z:T. ((x R\^{}a + b z) {}\mRightarrow{} (\mexists{}y:T. ((x R\^{}a y) \mwedge{} (y rel\_exp(T; R; b) z))))
By
Latex:
(InductionOnNat THEN Auto')
Home
Index