Nuprl Lemma : rel-exp-add-iff

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀a,b:ℕ. ∀x,z:T.  (x R^a ⇐⇒ ∃y:T. ((x R^a y) ∧ (y R^b z)))


Proof




Definitions occuring in Statement :  rel_exp: R^n nat: uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] add: m universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y cand: c∧ B le: A ≤ B less_than': less_than'(a;b) rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q bfalse: ff subtype_rel: A ⊆B bool: 𝔹 unit: Unit it:
Lemmas referenced :  infix_ap_wf rel_exp_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf intformless_wf int_formula_prop_less_lemma all_wf nat_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma exists_wf set_wf less_than_wf primrec-wf2 zero-add false_wf eq_int_wf intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf not_wf equal-wf-T-base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot general_arith_equation1 equal-wf-base int_subtype_base uiff_transitivity equal_wf rel_exp_add
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality because_Cache universeEquality dependent_set_memberEquality addEquality natural_numberEquality setElimination rename hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll functionExtensionality applyEquality functionEquality productEquality equalityTransitivity equalitySymmetry baseClosed productElimination independent_functionElimination impliesFunctionality baseApply closedConclusion equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}a,b:\mBbbN{}.  \mforall{}x,z:T.    (x  R\^{}a  +  b  z  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((x  R\^{}a  y)  \mwedge{}  (y  rel\_exp(T;  R;  b)  z)))



Date html generated: 2017_04_17-AM-09_28_17
Last ObjectModification: 2017_02_27-PM-05_29_07

Theory : relations2


Home Index