Step
*
1
of Lemma
rel_plus_closure
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [R2] : T ⟶ T ⟶ ℙ
4. Trans(T)(R2[_1;_2])
5. ∀x,y:T. ((x R y)
⇒ (x R2 y))
6. n : ℤ
7. 0 < n
8. ∀x,y:T. ((x R^n y)
⇒ (x R2 y))
9. x : T
10. y : T
11. x R^n + 1 y
⊢ x R2 y
BY
{ ((MoveToConcl (-1))
THEN RecUnfold `rel_exp` 0
THEN (SplitOnConclITE THENA Auto)
THEN Reduce 0
THEN Auto'
THEN ExRepD) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [R2] : T ⟶ T ⟶ ℙ
4. Trans(T)(R2[_1;_2])
5. ∀x,y:T. ((x R y)
⇒ (x R2 y))
6. n : ℤ
7. 0 < n
8. ∀x,y:T. ((x R^n y)
⇒ (x R2 y))
9. x : T
10. y : T
11. ¬((n + 1) = 0 ∈ ℤ)
12. z : T
13. x R z
14. z R^(n + 1) - 1 y
⊢ x R2 y
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. [R2] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
4. Trans(T)(R2[$_{1}$;$_{2}$])
5. \mforall{}x,y:T. ((x R y) {}\mRightarrow{} (x R2 y))
6. n : \mBbbZ{}
7. 0 < n
8. \mforall{}x,y:T. ((x rel\_exp(T; R; n) y) {}\mRightarrow{} (x R2 y))
9. x : T
10. y : T
11. x rel\_exp(T; R; n + 1) y
\mvdash{} x R2 y
By
Latex:
((MoveToConcl (-1))
THEN RecUnfold `rel\_exp` 0
THEN (SplitOnConclITE THENA Auto)
THEN Reduce 0
THEN Auto'
THEN ExRepD)
Home
Index