Nuprl Lemma : rel_plus_closure
∀[T:Type]. ∀[R,R2:T ⟶ T ⟶ ℙ].
  (Trans(T)(R2[_1;_2]) 
⇒ (∀x,y:T.  ((x R y) 
⇒ (x R2 y))) 
⇒ (∀x,y:T.  ((x R+ y) 
⇒ (x R2 y))))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rel_plus: R+
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rel_exp: R^n
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
rev_implies: P 
⇐ Q
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
rel_exp_one, 
infix_ap_wf, 
rel_exp_wf, 
false_wf, 
le_wf, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
all_wf, 
primrec-wf-nat-plus, 
nat_plus_subtype_nat, 
nat_plus_wf, 
rel_plus_wf, 
trans_wf, 
eq_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal_wf, 
bnot_wf, 
not_wf, 
exists_wf, 
subtract_wf, 
add-subtract-cancel, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
promote_hyp, 
cut, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
instantiate, 
cumulativity, 
because_Cache, 
universeEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
functionExtensionality, 
applyEquality, 
rename, 
setElimination, 
addEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
equalityElimination, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[R,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T)(R2[$_{1}$;$_{2}$])  {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  R  y)  {}\mRightarrow{}  (x  R\000C2  y)))  {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  R\msupplus{}  y)  {}\mRightarrow{}  (x  R2  y))))
Date html generated:
2017_04_17-AM-09_26_53
Last ObjectModification:
2017_02_27-PM-05_27_50
Theory : relations2
Home
Index