Nuprl Lemma : rel_plus_closure

[T:Type]. ∀[R,R2:T ⟶ T ⟶ ℙ].
  (Trans(T)(R2[_1;_2])  (∀x,y:T.  ((x y)  (x R2 y)))  (∀x,y:T.  ((x R+ y)  (x R2 y))))


Proof




Definitions occuring in Statement :  rel_plus: R+ trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] rel_plus: R+ infix_ap: y exists: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rel_exp: R^n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff rev_implies:  Q trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  rel_exp_one infix_ap_wf rel_exp_wf false_wf le_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf all_wf primrec-wf-nat-plus nat_plus_subtype_nat nat_plus_wf rel_plus_wf trans_wf eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf intformeq_wf int_formula_prop_eq_lemma equal_wf bnot_wf not_wf exists_wf subtract_wf add-subtract-cancel uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule productElimination thin promote_hyp cut hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination introduction extract_by_obid isectElimination instantiate cumulativity because_Cache universeEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation functionExtensionality applyEquality rename setElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality baseApply closedConclusion baseClosed equalityTransitivity equalitySymmetry productEquality equalityElimination impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T)(R2[$_{1}$;$_{2}$])  {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  R  y)  {}\mRightarrow{}  (x  R\000C2  y)))  {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  R\msupplus{}  y)  {}\mRightarrow{}  (x  R2  y))))



Date html generated: 2017_04_17-AM-09_26_53
Last ObjectModification: 2017_02_27-PM-05_27_50

Theory : relations2


Home Index