Nuprl Lemma : rel_exp_one

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (x R^1 ⇐⇒ y)


Proof




Definitions occuring in Statement :  rel_exp: R^n uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] subtract: m iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q exists: x:A. B[x] cand: c∧ B member: t ∈ T uimplies: supposing a sq_type: SQType(T) guard: {T} true: True false: False prop: so_lambda: λ2x.t[x] nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A subtype_rel: A ⊆B so_apply: x[s] rev_implies:  Q infix_ap: y rel_exp: R^n ifthenelse: if then else fi  eq_int: (i =z j) btrue: tt
Lemmas referenced :  subtype_base_sq int_subtype_base false_wf or_wf exists_wf less_than_wf infix_ap_wf rel_exp_wf le_wf equal-wf-base equal_wf rel_exp_iff iff_wf subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut sqequalRule independent_pairFormation sqequalHypSubstitution unionElimination thin productElimination hypothesis addLevel instantiate introduction extract_by_obid isectElimination cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality voidElimination levelHypothesis promote_hyp hypothesisEquality lambdaEquality productEquality because_Cache universeEquality dependent_set_memberEquality functionExtensionality applyEquality functionEquality baseClosed impliesFunctionality hyp_replacement inlFormation dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (x  rel\_exp(T;  R;  1)  y  \mLeftarrow{}{}\mRightarrow{}  x  R  y)



Date html generated: 2017_04_17-AM-09_26_49
Last ObjectModification: 2017_02_27-PM-05_27_48

Theory : relations2


Home Index