Nuprl Lemma : rel_exp_one
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (x R^1 y 
⇐⇒ x R y)
Proof
Definitions occuring in Statement : 
rel_exp: R^n
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
, 
rel_exp: R^n
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
btrue: tt
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
false_wf, 
or_wf, 
exists_wf, 
less_than_wf, 
infix_ap_wf, 
rel_exp_wf, 
le_wf, 
equal-wf-base, 
equal_wf, 
rel_exp_iff, 
iff_wf, 
subtract_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
sqequalRule, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
productElimination, 
hypothesis, 
addLevel, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
levelHypothesis, 
promote_hyp, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
because_Cache, 
universeEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
functionEquality, 
baseClosed, 
impliesFunctionality, 
hyp_replacement, 
inlFormation, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (x  rel\_exp(T;  R;  1)  y  \mLeftarrow{}{}\mRightarrow{}  x  R  y)
Date html generated:
2017_04_17-AM-09_26_49
Last ObjectModification:
2017_02_27-PM-05_27_48
Theory : relations2
Home
Index