Nuprl Lemma : rel_exp_iff

n:ℕ
  ∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
    ∀x,y:T.  (x R^n ⇐⇒ (∃z:T. (0 < c∧ ((x R^n z) ∧ (z y)))) ∨ ((n 0 ∈ ℤ) ∧ (x y ∈ T)))


Proof




Definitions occuring in Statement :  rel_exp: R^n nat: less_than: a < b uall: [x:A]. B[x] cand: c∧ B prop: infix_ap: y all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] subtract: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B so_apply: x[s] ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q guard: {T} infix_ap: y rel_exp: R^n ifthenelse: if then else fi  eq_int: (i =z j) btrue: tt less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) subtract: m
Lemmas referenced :  uall_wf all_wf iff_wf infix_ap_wf rel_exp_wf decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf or_wf exists_wf less_than_wf equal-wf-base int_subtype_base equal_wf set_wf primrec-wf2 nat_properties equal-wf-T-base nat_wf false_wf eq_int_wf bool_wf assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot intformeq_wf int_formula_prop_eq_lemma less_than_transitivity1 le_weakening less_than_irreflexivity and_wf decidable__equal_int subtype_base_sq bool_cases bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination universeEquality sqequalRule lambdaEquality functionEquality cumulativity hypothesisEquality because_Cache dependent_set_memberEquality dependent_functionElimination natural_numberEquality hypothesis unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionExtensionality applyEquality productEquality baseApply closedConclusion baseClosed isect_memberFormation inrFormation imageElimination productElimination equalityTransitivity equalitySymmetry equalityElimination independent_functionElimination impliesFunctionality inlFormation addLevel hyp_replacement applyLambdaEquality levelHypothesis

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
        \mforall{}x,y:T.
            (x  R\^{}n  y  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}z:T.  (0  <  n  c\mwedge{}  ((x  R\^{}n  -  1  z)  \mwedge{}  (z  R  y))))  \mvee{}  ((n  =  0)  \mwedge{}  (x  =  y)))



Date html generated: 2017_04_17-AM-09_26_24
Last ObjectModification: 2017_02_27-PM-05_28_16

Theory : relations2


Home Index