Step
*
1
of Lemma
transitive-closure-minimal
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. [Q] : A ⟶ A ⟶ ℙ
4. F : x:A ⟶ y:A ⟶ (x R y) ⟶ (x Q y)
5. ∀a,b,c:A. ((a Q b)
⇒ (b Q c)
⇒ (a Q c))
6. x : A
7. y : A
8. {L:(a:A × b:A × (R a b)) List| rel_path(A;L;x;y) ∧ 0 < ||L||}
⊢ x Q y
BY
{ Assert ⌜∃w:{a:A × b:A × (Q a b)| (((fst(w)) = x ∈ A) ∧ ((fst(snd(w))) = y ∈ A))}⌝⋅ }
1
.....assertion.....
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. [Q] : A ⟶ A ⟶ ℙ
4. F : x:A ⟶ y:A ⟶ (x R y) ⟶ (x Q y)
5. ∀a,b,c:A. ((a Q b)
⇒ (b Q c)
⇒ (a Q c))
6. x : A
7. y : A
8. {L:(a:A × b:A × (R a b)) List| rel_path(A;L;x;y) ∧ 0 < ||L||}
⊢ ∃w:{a:A × b:A × (Q a b)| (((fst(w)) = x ∈ A) ∧ ((fst(snd(w))) = y ∈ A))}
2
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. [Q] : A ⟶ A ⟶ ℙ
4. F : x:A ⟶ y:A ⟶ (x R y) ⟶ (x Q y)
5. ∀a,b,c:A. ((a Q b)
⇒ (b Q c)
⇒ (a Q c))
6. x : A
7. y : A
8. {L:(a:A × b:A × (R a b)) List| rel_path(A;L;x;y) ∧ 0 < ||L||}
9. ∃w:{a:A × b:A × (Q a b)| (((fst(w)) = x ∈ A) ∧ ((fst(snd(w))) = y ∈ A))}
⊢ x Q y
Latex:
Latex:
1. [A] : Type
2. [R] : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. [Q] : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
4. F : x:A {}\mrightarrow{} y:A {}\mrightarrow{} (x R y) {}\mrightarrow{} (x Q y)
5. \mforall{}a,b,c:A. ((a Q b) {}\mRightarrow{} (b Q c) {}\mRightarrow{} (a Q c))
6. x : A
7. y : A
8. \{L:(a:A \mtimes{} b:A \mtimes{} (R a b)) List| rel\_path(A;L;x;y) \mwedge{} 0 < ||L||\}
\mvdash{} x Q y
By
Latex:
Assert \mkleeneopen{}\mexists{}w:\{a:A \mtimes{} b:A \mtimes{} (Q a b)| (((fst(w)) = x) \mwedge{} ((fst(snd(w))) = y))\}\mkleeneclose{}\mcdot{}
Home
Index