Step
*
of Lemma
id-fun-subtype
∀[A,B:Type]. id-fun(B) ⊆r id-fun(A) supposing strong-subtype(A;B)
BY
{ ((UnivCD THENA Auto)
THEN (D 0 THENA Auto)
THEN (FLemma `strong-subtype-implies` [3] THENA Auto)
THEN PromoteHyp (-1) 3
THEN D 4
THEN All (Unfold `id-fun`)) }
1
1. A : Type
2. B : Type
3. ∀b:B. ∀a:A. ((b = a ∈ B)
⇒ (b = a ∈ A))
4. A ⊆r B
5. {b:B| ∃a:A. (b = a ∈ B)} ⊆r A
6. x : x:B ⟶ {y:B| x = y ∈ B}
⊢ x ∈ x:A ⟶ {y:A| x = y ∈ A}
Latex:
Latex:
\mforall{}[A,B:Type]. id-fun(B) \msubseteq{}r id-fun(A) supposing strong-subtype(A;B)
By
Latex:
((UnivCD THENA Auto)
THEN (D 0 THENA Auto)
THEN (FLemma `strong-subtype-implies` [3] THENA Auto)
THEN PromoteHyp (-1) 3
THEN D 4
THEN All (Unfold `id-fun`))
Home
Index