Nuprl Lemma : squash-product
∀[A,B:Type].  uiff(↓A × B;↓A × (↓B))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
introduction, 
cut, 
productElimination, 
thin, 
independent_pairEquality, 
sqequalHypSubstitution, 
imageElimination, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
lemma_by_obid, 
isectElimination, 
productEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].    uiff(\mdownarrow{}A  \mtimes{}  B;\mdownarrow{}A  \mtimes{}  (\mdownarrow{}B))
Date html generated:
2016_05_13-PM-04_14_02
Last ObjectModification:
2016_01_14-PM-07_28_50
Theory : subtype_1
Home
Index