Nuprl Lemma : squash-product

[A,B:Type].  uiff(↓A × B;↓A × (↓B))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] squash: T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T squash: T prop:
Lemmas referenced :  squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation introduction cut productElimination thin independent_pairEquality sqequalHypSubstitution imageElimination hypothesis sqequalRule imageMemberEquality hypothesisEquality baseClosed lemma_by_obid isectElimination productEquality universeEquality

Latex:
\mforall{}[A,B:Type].    uiff(\mdownarrow{}A  \mtimes{}  B;\mdownarrow{}A  \mtimes{}  (\mdownarrow{}B))



Date html generated: 2016_05_13-PM-04_14_02
Last ObjectModification: 2016_01_14-PM-07_28_50

Theory : subtype_1


Home Index