Step
*
of Lemma
union-continuous-type-monotone
∀[F:Type ⟶ Type]. (Monotone(T.F[T])) supposing (union-continuous{i:l}(T.F[T]) and (∀A,B:Type. (A ≡ B
⇒ F[A] ≡ F[B])))
BY
{ Auto }
1
.....wf.....
1. F : Type ⟶ Type
2. ∀A,B:Type. (A ≡ B
⇒ F[A] ≡ F[B])
3. union-continuous{i:l}(T.F[T])
4. A : Type
5. B : Type
6. A ⊆r B
7. x : F A@i
⊢ x ∈ F B
Latex:
Latex:
\mforall{}[F:Type {}\mrightarrow{} Type]
(Monotone(T.F[T])) supposing
(union-continuous\{i:l\}(T.F[T]) and
(\mforall{}A,B:Type. (A \mequiv{} B {}\mRightarrow{} F[A] \mequiv{} F[B])))
By
Latex:
Auto
Home
Index