Nuprl Lemma : union-continuous-type-monotone

[F:Type ⟶ Type]. (Monotone(T.F[T])) supposing (union-continuous{i:l}(T.F[T]) and (∀A,B:Type.  (A ≡  F[A] ≡ F[B])))


Proof




Definitions occuring in Statement :  union-continuous: union-continuous{i:l}(T.F[T]) type-monotone: Monotone(T.F[T]) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B so_apply: x[s] prop: so_lambda: λ2x.t[x] implies:  Q union-continuous: union-continuous{i:l}(T.F[T]) tunion: x:A.B[x] ifthenelse: if then else fi  btrue: tt pi2: snd(t) all: x:A. B[x] ext-eq: A ≡ B and: P ∧ Q bool: 𝔹 bfalse: ff guard: {T}
Lemmas referenced :  subtype_rel_transitivity bfalse_wf tunion_wf btrue_wf ifthenelse_wf bool_wf ext-eq_wf all_wf union-continuous_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution applyEquality hypothesisEquality sqequalRule axiomEquality hypothesis lemma_by_obid isectElimination thin isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality instantiate cumulativity functionEquality imageMemberEquality dependent_pairEquality baseClosed dependent_functionElimination independent_functionElimination productElimination independent_pairFormation imageElimination unionElimination independent_isectElimination

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    (Monotone(T.F[T]))  supposing 
          (union-continuous\{i:l\}(T.F[T])  and 
          (\mforall{}A,B:Type.    (A  \mequiv{}  B  {}\mRightarrow{}  F[A]  \mequiv{}  F[B])))



Date html generated: 2016_05_13-PM-04_10_24
Last ObjectModification: 2016_01_14-PM-07_29_50

Theory : subtype_1


Home Index