Nuprl Lemma : prec-induction-ext

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[Q:i:P ⟶ prec(lbl,p.a[lbl;p];i) ⟶ TYPE].
  ((∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  ((∀j:P. ∀z:{z:prec(lbl,p.a[lbl;p];j)| prec_sub+(P;lbl,p.a[lbl;p]) <j, z> <i, x>.\000C  Q[j;z])  Q[i;x]))
   (∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  Q[i;x]))


Proof




Definitions occuring in Statement :  prec_sub+: prec_sub+(P;lbl,p.a[lbl; p]) prec: prec(lbl,p.a[lbl; p];i) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] pair: <a, b> union: left right atom: Atom universe: Type
Definitions unfolded in proof :  member: t ∈ T genrec-ap: genrec-ap prec-induction prec-size-induction-ext
Lemmas referenced :  prec-induction prec-size-induction-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[Q:i:P  {}\mrightarrow{}  prec(lbl,p.a[lbl;p];i)  {}\mrightarrow{}  TYPE].
    ((\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).
            ((\mforall{}j:P.  \mforall{}z:\{z:prec(lbl,p.a[lbl;p];j)|  prec\_sub+(P;lbl,p.a[lbl;p])  <j,  z>  <i,  x>\}  .    Q[j;z])  {}\mRightarrow{}\000C  Q[i;x]))
    {}\mRightarrow{}  (\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).    Q[i;x]))



Date html generated: 2019_06_20-PM-02_14_30
Last ObjectModification: 2019_03_25-PM-08_52_10

Theory : tuples


Home Index