Nuprl Lemma : prec-induction-ext
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)]. ∀[Q:i:P ⟶ prec(lbl,p.a[lbl;p];i) ⟶ TYPE].
  ((∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  ((∀j:P. ∀z:{z:prec(lbl,p.a[lbl;p];j)| prec_sub+(P;lbl,p.a[lbl;p]) <j, z> <i, x>} .\000C  Q[j;z]) 
⇒ Q[i;x]))
  
⇒ (∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  Q[i;x]))
Proof
Definitions occuring in Statement : 
prec_sub+: prec_sub+(P;lbl,p.a[lbl; p])
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
genrec-ap: genrec-ap, 
prec-induction, 
prec-size-induction-ext
Lemmas referenced : 
prec-induction, 
prec-size-induction-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[Q:i:P  {}\mrightarrow{}  prec(lbl,p.a[lbl;p];i)  {}\mrightarrow{}  TYPE].
    ((\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).
            ((\mforall{}j:P.  \mforall{}z:\{z:prec(lbl,p.a[lbl;p];j)|  prec\_sub+(P;lbl,p.a[lbl;p])  <j,  z>  <i,  x>\}  .    Q[j;z])  {}\mRightarrow{}\000C  Q[i;x]))
    {}\mRightarrow{}  (\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).    Q[i;x]))
Date html generated:
2019_06_20-PM-02_14_30
Last ObjectModification:
2019_03_25-PM-08_52_10
Theory : tuples
Home
Index