Step
*
2
of Lemma
respects-equality-union
1. T1 : Type
2. T2 : Type
3. S1 : Type
4. S2 : Type
5. respects-equality(S1;T1)
6. respects-equality(S2;T2)
7. x : Base
8. y : Base
9. (inr outr(x) ) = (inr outr(y) ) ∈ (S1 + S2)
10. x ∈ T1 + T2
11. x ~ inr outr(x)
12. y ~ inr outr(y)
13. (inr outr(x) ) = (inr outr(y) ) ∈ {z:S1 + S2| (z = (inr outr(x) ) ∈ (S1 + S2)) ∧ (z = (inr outr(y) ) ∈ (S1 + S2))}
14. outr(x) = outr(y) ∈ S2
⊢ outr(x) = outr(y) ∈ T2
BY
{ ((D 6 With ⌜outr(x)⌝ THENA Auto) THEN BHyp -1 THEN Auto THEN HypSubst' (-5) 0 THEN Reduce 0 THEN Auto) }
Latex:
Latex:
1. T1 : Type
2. T2 : Type
3. S1 : Type
4. S2 : Type
5. respects-equality(S1;T1)
6. respects-equality(S2;T2)
7. x : Base
8. y : Base
9. (inr outr(x) ) = (inr outr(y) )
10. x \mmember{} T1 + T2
11. x \msim{} inr outr(x)
12. y \msim{} inr outr(y)
13. (inr outr(x) ) = (inr outr(y) )
14. outr(x) = outr(y)
\mvdash{} outr(x) = outr(y)
By
Latex:
((D 6 With \mkleeneopen{}outr(x)\mkleeneclose{} THENA Auto)
THEN BHyp -1
THEN Auto
THEN HypSubst' (-5) 0
THEN Reduce 0
THEN Auto)
Home
Index