Step * 1 1 1 of Lemma bag-bind-com

.....equality..... 
1. Type
2. Type
3. Type
4. A ⟶ B ⟶ bag(C)
5. ba bag(A)
6. as List
7. bs List
8. permutation(B;as;bs)
⊢ bag-union(bag-map(λa.bag-union(bag-map(λb.f[a;b];as));ba))
bag-union(bag-map(λb.bag-union(bag-map(λa.f[a;b];ba));as))
∈ bag(C)
BY
(ThinVar `bs' THEN ListInd (-1)) }

1
1. Type
2. Type
3. Type
4. A ⟶ B ⟶ bag(C)
5. ba bag(A)
⊢ bag-union(bag-map(λa.bag-union(bag-map(λb.f[a;b];[]));ba))
bag-union(bag-map(λb.bag-union(bag-map(λa.f[a;b];ba));[]))
∈ bag(C)

2
1. Type
2. Type
3. Type
4. A ⟶ B ⟶ bag(C)
5. ba bag(A)
6. B
7. List
8. bag-union(bag-map(λa.bag-union(bag-map(λb.f[a;b];v));ba))
bag-union(bag-map(λb.bag-union(bag-map(λa.f[a;b];ba));v))
∈ bag(C)
⊢ bag-union(bag-map(λa.bag-union(bag-map(λb.f[a;b];[u v]));ba))
bag-union(bag-map(λb.bag-union(bag-map(λa.f[a;b];ba));[u v]))
∈ bag(C)


Latex:


Latex:
.....equality..... 
1.  A  :  Type
2.  B  :  Type
3.  C  :  Type
4.  f  :  A  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)
5.  ba  :  bag(A)
6.  as  :  B  List
7.  bs  :  B  List
8.  permutation(B;as;bs)
\mvdash{}  bag-union(bag-map(\mlambda{}a.bag-union(bag-map(\mlambda{}b.f[a;b];as));ba))
=  bag-union(bag-map(\mlambda{}b.bag-union(bag-map(\mlambda{}a.f[a;b];ba));as))


By


Latex:
(ThinVar  `bs'  THEN  ListInd  (-1))




Home Index