Step * 1 1 2 of Lemma bag-bind-com


1. Type
2. Type
3. Type
4. A ⟶ B ⟶ bag(C)
5. ba bag(A)
6. as List
7. bs List
8. permutation(B;as;bs)
⊢ bag-union(bag-map(λb.bag-union(bag-map(λa.f[a;b];ba));as))
bag-union(bag-map(λb.bag-union(bag-map(λa.f[a;b];ba));bs))
∈ bag(C)
BY
(Assert ⌜as bs ∈ bag(B)⌝⋅ THEN Auto) }


Latex:


Latex:

1.  A  :  Type
2.  B  :  Type
3.  C  :  Type
4.  f  :  A  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)
5.  ba  :  bag(A)
6.  as  :  B  List
7.  bs  :  B  List
8.  permutation(B;as;bs)
\mvdash{}  bag-union(bag-map(\mlambda{}b.bag-union(bag-map(\mlambda{}a.f[a;b];ba));as))
=  bag-union(bag-map(\mlambda{}b.bag-union(bag-map(\mlambda{}a.f[a;b];ba));bs))


By


Latex:
(Assert  \mkleeneopen{}as  =  bs\mkleeneclose{}\mcdot{}  THEN  Auto)




Home Index