Step * 1 1 2 1 1 of Lemma bag-map-union2


1. Type
2. Type
3. A ⟶ B
4. bag(bag(A))
5. bag-map(λa.{g a};bag-union(x)) bag-union(bag-map(λb.bag-map(λa.{g a};b);x)) ∈ bag(bag(B))
6. bag-union(bag-map(λa.{g a};bag-union(x))) bag-union(bag-union(bag-map(λb.bag-map(λa.{g a};b);x))) ∈ bag(B)
⊢ bag-map(g;bag-union(x)) bag-union(bag-map(λa.{g a};bag-union(x))) ∈ bag(B)
BY
(Fold `bag-combine` THEN (RWO "bag-combine-single-right-as-map" THENA Auto) THEN EqCDA THEN Auto) }


Latex:


Latex:

1.  A  :  Type
2.  B  :  Type
3.  g  :  A  {}\mrightarrow{}  B
4.  x  :  bag(bag(A))
5.  bag-map(\mlambda{}a.\{g  a\};bag-union(x))  =  bag-union(bag-map(\mlambda{}b.bag-map(\mlambda{}a.\{g  a\};b);x))
6.  bag-union(bag-map(\mlambda{}a.\{g  a\};bag-union(x)))
=  bag-union(bag-union(bag-map(\mlambda{}b.bag-map(\mlambda{}a.\{g  a\};b);x)))
\mvdash{}  bag-map(g;bag-union(x))  =  bag-union(bag-map(\mlambda{}a.\{g  a\};bag-union(x)))


By


Latex:
(Fold  `bag-combine`  0
  THEN  (RWO  "bag-combine-single-right-as-map"  0  THENA  Auto)
  THEN  EqCDA
  THEN  Auto)




Home Index