Nuprl Lemma : bag-map-union2
∀[A,B:Type]. ∀[g:A ⟶ B]. ∀[x:bag(bag(A))].  (bag-map(g;bag-union(x)) = bag-union(bag-map(λz.bag-map(g;z);x)) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
bag-combine: ⋃x∈bs.f[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
bag-map-union, 
single-bag_wf, 
bag-union_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-combine-single-right-as-map, 
bag-map_wf, 
eta_conv, 
subtype_rel_self, 
iff_weakening_equal, 
bag-map-combine, 
bag-map-trivial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
universeEquality, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
voidEquality, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
lambdaFormation
Latex:
\mforall{}[A,B:Type].  \mforall{}[g:A  {}\mrightarrow{}  B].  \mforall{}[x:bag(bag(A))].
    (bag-map(g;bag-union(x))  =  bag-union(bag-map(\mlambda{}z.bag-map(g;z);x)))
Date html generated:
2018_05_21-PM-06_24_09
Last ObjectModification:
2018_05_19-PM-05_15_08
Theory : bags
Home
Index