Nuprl Lemma : bag-map-union

[T,S:Type]. ∀[f:T ⟶ bag(S)]. ∀[bbs:bag(bag(T))].
  (bag-map(f;bag-union(bbs)) bag-union(bag-map(λb.bag-map(f;b);bbs)) ∈ bag(bag(S)))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bag-map: bag-map(f;bs) bag: bag(T) uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bag-union: bag-union(bbs) bag-map: bag-map(f;bs) concat: concat(ll) true: True
Lemmas referenced :  bag_wf list_wf permutation_wf equal_wf equal-wf-base nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int map_nil_lemma reduce_nil_lemma map_cons_lemma reduce_cons_lemma map_append_sq bag-map_wf squash_wf true_wf bag-union_wf quotient-member-eq permutation-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache rename dependent_functionElimination independent_functionElimination productEquality isect_memberEquality axiomEquality functionEquality universeEquality setElimination intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll sqequalAxiom applyEquality unionElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination imageMemberEquality

Latex:
\mforall{}[T,S:Type].  \mforall{}[f:T  {}\mrightarrow{}  bag(S)].  \mforall{}[bbs:bag(bag(T))].
    (bag-map(f;bag-union(bbs))  =  bag-union(bag-map(\mlambda{}b.bag-map(f;b);bbs)))



Date html generated: 2017_10_01-AM-08_46_42
Last ObjectModification: 2017_07_26-PM-04_31_25

Theory : bags


Home Index