Nuprl Lemma : bag-map-combine

[A,B,C:Type]. ∀[g:A ⟶ bag(B)]. ∀[f:B ⟶ C]. ∀[bs:bag(A)].  (bag-map(f;⋃x∈bs.g[x]) = ⋃x∈bs.bag-map(f;g[x]) ∈ bag(C))


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] bag-map: bag-map(f;bs) bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B empty-bag: {} top: Top single-bag: {x} bag-append: as bs append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bag_wf list_wf quotient-member-eq permutation_wf permutation-equiv equal_wf bag-map_wf bag-combine_wf list-subtype-bag equal-wf-base list_induction bag_combine_empty_lemma bag_map_empty_lemma empty-bag_wf list_ind_cons_lemma list_ind_nil_lemma top_wf single-bag_wf subtype_rel_bag bag-append_wf squash_wf true_wf bag-combine-single-left bag-map-append bag-combine-append-left iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache functionEquality universeEquality pointwiseFunctionalityForEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality functionExtensionality applyEquality productEquality voidElimination voidEquality equalityUniverse levelHypothesis natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  bag(B)].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[bs:bag(A)].
    (bag-map(f;\mcup{}x\mmember{}bs.g[x])  =  \mcup{}x\mmember{}bs.bag-map(f;g[x]))



Date html generated: 2017_10_01-AM-08_47_33
Last ObjectModification: 2017_07_26-PM-04_32_01

Theory : bags


Home Index