Nuprl Lemma : bag_combine_empty_lemma

f:Top. (⋃x∈{}.f[x] {})


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] empty-bag: {} top: Top so_apply: x[s] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T bag-combine: x∈bs.f[x] top: Top
Lemmas referenced :  top_wf bag_map_empty_lemma bag_union_empty_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}f:Top.  (\mcup{}x\mmember{}\{\}.f[x]  \msim{}  \{\})



Date html generated: 2016_05_15-PM-02_28_04
Last ObjectModification: 2015_12_27-AM-09_51_05

Theory : bags


Home Index