Step * 1 of Lemma bag-map-union


1. Type
2. Type
3. T ⟶ bag(S)
4. as bag(T) List
5. bs bag(T) List
6. permutation(bag(T);as;bs)
⊢ bag-map(f;bag-union(as)) bag-union(bag-map(λb.bag-map(f;b);bs)) ∈ bag(bag(S))
BY
Subst ⌜bag-union(bag-map(λb.bag-map(f;b);bs)) bag-map(f;bag-union(bs))⌝ 0⋅ }

1
.....equality..... 
1. Type
2. Type
3. T ⟶ bag(S)
4. as bag(T) List
5. bs bag(T) List
6. permutation(bag(T);as;bs)
⊢ bag-union(bag-map(λb.bag-map(f;b);bs)) bag-map(f;bag-union(bs))

2
1. Type
2. Type
3. T ⟶ bag(S)
4. as bag(T) List
5. bs bag(T) List
6. permutation(bag(T);as;bs)
⊢ bag-map(f;bag-union(as)) bag-map(f;bag-union(bs)) ∈ bag(bag(S))


Latex:


Latex:

1.  T  :  Type
2.  S  :  Type
3.  f  :  T  {}\mrightarrow{}  bag(S)
4.  as  :  bag(T)  List
5.  bs  :  bag(T)  List
6.  permutation(bag(T);as;bs)
\mvdash{}  bag-map(f;bag-union(as))  =  bag-union(bag-map(\mlambda{}b.bag-map(f;b);bs))


By


Latex:
Subst  \mkleeneopen{}bag-union(bag-map(\mlambda{}b.bag-map(f;b);bs))  \msim{}  bag-map(f;bag-union(bs))\mkleeneclose{}  0\mcdot{}




Home Index