Step
*
1
1
1
of Lemma
bag-member-filter-implies2
1. [T] : Type
2. b1 : T List
3. x1 : {x:T| x ↓∈ b1} ⟶ 𝔹
4. x : T
5. x ↓∈ [x∈b1|x1[x]]
⊢ Ax ∈ x ↓∈ b1
BY
{ (RepUR ``bag-filter bag-member`` (-1)
THEN (TrySquashExRepD (-1) THENA Auto)
THEN (EqTypeHD (-2) THENA EAuto 2)
THEN (Unhide THENA Auto)
THEN (FLemma `member-permutation` [-2]
THENA (Try (Complete (Auto))
THEN InstLemma `filter_wf2` [⌜T⌝;⌜b1⌝;⌜λx.x1[x]⌝]⋅
THEN Try (Complete (Auto))
THEN Auto
THEN DVarSets
THEN MemTypeCD
THEN Auto
THEN BLemma `list-member-bag-member`
THEN Auto)
)
THEN (RWO "-1" (-2) THENA Auto)
THEN RWO "member_filter_2" (-2)
THEN Auto
THEN Try (Complete ((BLemma `bag-member-evidence` THEN Auto THEN BLemma `list-member-bag-member` THEN Auto)))
THEN DVarSets
THEN MemTypeCD
THEN Auto
THEN BLemma `list-member-bag-member`
THEN Auto) }
Latex:
Latex:
1. [T] : Type
2. b1 : T List
3. x1 : \{x:T| x \mdownarrow{}\mmember{} b1\} {}\mrightarrow{} \mBbbB{}
4. x : T
5. x \mdownarrow{}\mmember{} [x\mmember{}b1|x1[x]]
\mvdash{} Ax \mmember{} x \mdownarrow{}\mmember{} b1
By
Latex:
(RepUR ``bag-filter bag-member`` (-1)
THEN (TrySquashExRepD (-1) THENA Auto)
THEN (EqTypeHD (-2) THENA EAuto 2)
THEN (Unhide THENA Auto)
THEN (FLemma `member-permutation` [-2]
THENA (Try (Complete (Auto))
THEN InstLemma `filter\_wf2` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}b1\mkleeneclose{};\mkleeneopen{}\mlambda{}x.x1[x]\mkleeneclose{}]\mcdot{}
THEN Try (Complete (Auto))
THEN Auto
THEN DVarSets
THEN MemTypeCD
THEN Auto
THEN BLemma `list-member-bag-member`
THEN Auto)
)
THEN (RWO "-1" (-2) THENA Auto)
THEN RWO "member\_filter\_2" (-2)
THEN Auto
THEN Try (Complete ((BLemma `bag-member-evidence`
THEN Auto
THEN BLemma `list-member-bag-member`
THEN Auto)))
THEN DVarSets
THEN MemTypeCD
THEN Auto
THEN BLemma `list-member-bag-member`
THEN Auto)
Home
Index