Nuprl Lemma : bag-member-filter-implies2

[T:Type]. ∀[x:T]. ∀[bs:bag(T)]. ∀[P:{x:T| x ↓∈ bs}  ⟶ 𝔹].  x ↓∈ bs ∧ (↑P[x]) supposing x ↓∈ [x∈bs|P[x]]


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: guard: {T} so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x] and: P ∧ Q rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B quotient: x,y:A//B[x; y] bag: bag(T) exists: x:A. B[x] squash: T bag-member: x ↓∈ bs bag-filter: [x∈b|p[x]] sq_stable: SqStable(P) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True respects-equality: respects-equality(S;T)
Lemmas referenced :  bag-member_wf bool_wf bag_wf istype-universe list_wf assert_wf subtype_rel_bag list-subtype-bag bag-filter-wf2 permutation_wf l_member-bag-member filter_wf5 bag-member-evidence list-member-bag-member l_member_wf member_filter_2 member-permutation assert_witness sq_stable__uall istype-assert sq_stable__and sq_stable__bag-member sq_stable_from_decidable decidable__assert quotient-member-eq permutation-equiv iff_weakening_equal subtype-respects-equality subtype_rel_sets_simple squash_wf true_wf subtype_rel_self equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut functionIsType setIsType because_Cache universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate universeEquality setEquality equalitySymmetry equalityTransitivity dependent_functionElimination dependent_set_memberEquality_alt rename setElimination inhabitedIsType independent_isectElimination applyEquality lambdaEquality_alt sqequalRule lambdaFormation_alt independent_pairFormation baseClosed imageMemberEquality equalityIsType1 productIsType independent_functionElimination pertypeElimination productElimination imageElimination productEquality isect_memberEquality_alt independent_pairEquality functionIsTypeImplies pointwiseFunctionalityForEquality promote_hyp equalityIstype sqequalBase functionEquality natural_numberEquality isectEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].  \mforall{}[P:\{x:T|  x  \mdownarrow{}\mmember{}  bs\}    {}\mrightarrow{}  \mBbbB{}].
    x  \mdownarrow{}\mmember{}  bs  \mwedge{}  (\muparrow{}P[x])  supposing  x  \mdownarrow{}\mmember{}  [x\mmember{}bs|P[x]]



Date html generated: 2019_10_15-AM-11_02_35
Last ObjectModification: 2018_11_27-AM-00_30_22

Theory : bags


Home Index