Nuprl Lemma : bag-member-filter-implies2
∀[T:Type]. ∀[x:T]. ∀[bs:bag(T)]. ∀[P:{x:T| x ↓∈ bs}  ⟶ 𝔹].  x ↓∈ bs ∧ (↑P[x]) supposing x ↓∈ [x∈bs|P[x]]
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
bag: bag(T)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
bag-member: x ↓∈ bs
, 
bag-filter: [x∈b|p[x]]
, 
sq_stable: SqStable(P)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
true: True
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
bag-member_wf, 
bool_wf, 
bag_wf, 
istype-universe, 
list_wf, 
assert_wf, 
subtype_rel_bag, 
list-subtype-bag, 
bag-filter-wf2, 
permutation_wf, 
l_member-bag-member, 
filter_wf5, 
bag-member-evidence, 
list-member-bag-member, 
l_member_wf, 
member_filter_2, 
member-permutation, 
assert_witness, 
sq_stable__uall, 
istype-assert, 
sq_stable__and, 
sq_stable__bag-member, 
sq_stable_from_decidable, 
decidable__assert, 
quotient-member-eq, 
permutation-equiv, 
iff_weakening_equal, 
subtype-respects-equality, 
subtype_rel_sets_simple, 
squash_wf, 
true_wf, 
subtype_rel_self, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
functionIsType, 
setIsType, 
because_Cache, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
universeEquality, 
setEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
rename, 
setElimination, 
inhabitedIsType, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
sqequalRule, 
lambdaFormation_alt, 
independent_pairFormation, 
baseClosed, 
imageMemberEquality, 
equalityIsType1, 
productIsType, 
independent_functionElimination, 
pertypeElimination, 
productElimination, 
imageElimination, 
productEquality, 
isect_memberEquality_alt, 
independent_pairEquality, 
functionIsTypeImplies, 
pointwiseFunctionalityForEquality, 
promote_hyp, 
equalityIstype, 
sqequalBase, 
functionEquality, 
natural_numberEquality, 
isectEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].  \mforall{}[P:\{x:T|  x  \mdownarrow{}\mmember{}  bs\}    {}\mrightarrow{}  \mBbbB{}].
    x  \mdownarrow{}\mmember{}  bs  \mwedge{}  (\muparrow{}P[x])  supposing  x  \mdownarrow{}\mmember{}  [x\mmember{}bs|P[x]]
Date html generated:
2019_10_15-AM-11_02_35
Last ObjectModification:
2018_11_27-AM-00_30_22
Theory : bags
Home
Index