Nuprl Lemma : member-permutation

[A:Type]. ∀as,bs:A List.  (permutation(A;as;bs)  {∀a:A. ((a ∈ as) ⇐⇒ (a ∈ bs))})


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) l_member: (x ∈ l) list: List uall: [x:A]. B[x] guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} prop: l_contains: A ⊆ B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  permutation_inversion permutation-contains permutation_wf list_wf l_all_iff l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis because_Cache universeEquality sqequalRule lambdaEquality setElimination rename setEquality productElimination independent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}as,bs:A  List.    (permutation(A;as;bs)  {}\mRightarrow{}  \{\mforall{}a:A.  ((a  \mmember{}  as)  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  bs))\})



Date html generated: 2016_05_14-PM-02_21_52
Last ObjectModification: 2015_12_26-PM-04_27_32

Theory : list_1


Home Index