Nuprl Lemma : bag-member-evidence

[T:Type]. ∀[b:bag(T)]. ∀[x:T].  Ax ∈ x ↓∈ supposing x ↓∈ b


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag-member: x ↓∈ bs squash: T prop:
Lemmas referenced :  bag_wf bag-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution imageElimination hypothesis imageMemberEquality hypothesisEquality thin baseClosed axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[x:T].    Ax  \mmember{}  x  \mdownarrow{}\mmember{}  b  supposing  x  \mdownarrow{}\mmember{}  b



Date html generated: 2016_05_15-PM-02_39_40
Last ObjectModification: 2016_01_16-AM-08_48_06

Theory : bags


Home Index