Nuprl Lemma : list-member-bag-member

[T:Type]. ∀L:T List. ∀x:T.  ((x ∈ L)  x ↓∈ L)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bag-member: x ↓∈ bs exists: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a prop: squash: T
Lemmas referenced :  list-subtype-bag equal_wf bag_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation dependent_pairFormation hypothesisEquality independent_pairFormation applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination lambdaEquality hypothesis sqequalRule productEquality cumulativity imageMemberEquality baseClosed dependent_functionElimination imageElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  x  \mdownarrow{}\mmember{}  L)



Date html generated: 2017_10_01-AM-08_54_43
Last ObjectModification: 2017_07_26-PM-04_36_28

Theory : bags


Home Index