Nuprl Lemma : bag-filter-wf2

[T:Type]. ∀[bs:bag(T)]. ∀[p:{b:T| b ↓∈ bs}  ⟶ 𝔹].  ([x∈bs|p[x]] ∈ bag({x:{b:T| b ↓∈ bs} | ↑p[x]} ))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  bag-filter_wf bag-member_wf bag-subtype bool_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry axiomEquality functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[p:\{b:T|  b  \mdownarrow{}\mmember{}  bs\}    {}\mrightarrow{}  \mBbbB{}].    ([x\mmember{}bs|p[x]]  \mmember{}  bag(\{x:\{b:T|  b  \mdownarrow{}\mmember{}  bs\}  |  \muparrow{}p[x]\}  )\000C)



Date html generated: 2016_05_15-PM-02_47_12
Last ObjectModification: 2015_12_27-AM-09_36_19

Theory : bags


Home Index