Nuprl Lemma : bag-filter-wf2
∀[T:Type]. ∀[bs:bag(T)]. ∀[p:{b:T| b ↓∈ bs}  ⟶ 𝔹].  ([x∈bs|p[x]] ∈ bag({x:{b:T| b ↓∈ bs} | ↑p[x]} ))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bag-filter_wf, 
bag-member_wf, 
bag-subtype, 
bool_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[p:\{b:T|  b  \mdownarrow{}\mmember{}  bs\}    {}\mrightarrow{}  \mBbbB{}].    ([x\mmember{}bs|p[x]]  \mmember{}  bag(\{x:\{b:T|  b  \mdownarrow{}\mmember{}  bs\}  |  \muparrow{}p[x]\}  )\000C)
Date html generated:
2016_05_15-PM-02_47_12
Last ObjectModification:
2015_12_27-AM-09_36_19
Theory : bags
Home
Index