Nuprl Lemma : bag-filter_wf
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  ([x∈bs|p[x]] ∈ bag({x:T| ↑p[x]} ))
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag: bag(T)
, 
so_apply: x[s]
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bag-filter: [x∈b|p[x]]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
bag_wf, 
assert_wf, 
list_wf, 
quotient-member-eq, 
filter_type, 
permutation_wf, 
equal_wf, 
equal-wf-base, 
bool_wf, 
permutation-filter, 
permutation-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
because_Cache, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
lambdaEquality, 
independent_functionElimination, 
productEquality, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    ([x\mmember{}bs|p[x]]  \mmember{}  bag(\{x:T|  \muparrow{}p[x]\}  ))
Date html generated:
2017_10_01-AM-08_45_17
Last ObjectModification:
2017_07_26-PM-04_30_38
Theory : bags
Home
Index