Nuprl Lemma : bag-filter_wf

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  ([x∈bs|p[x]] ∈ bag({x:T| ↑p[x]} ))


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) so_apply: x[s] prop: quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q bag-filter: [x∈b|p[x]] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x]
Lemmas referenced :  bag_wf assert_wf list_wf quotient-member-eq filter_type permutation_wf equal_wf equal-wf-base bool_wf permutation-filter permutation-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin setEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache rename independent_isectElimination dependent_functionElimination lambdaEquality independent_functionElimination productEquality axiomEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    ([x\mmember{}bs|p[x]]  \mmember{}  bag(\{x:T|  \muparrow{}p[x]\}  ))



Date html generated: 2017_10_01-AM-08_45_17
Last ObjectModification: 2017_07_26-PM-04_30_38

Theory : bags


Home Index