Nuprl Lemma : l_member-bag-member

[T:Type]. ∀x:T. ∀L:T List.  (x ↓∈ ⇐⇒ ↓(x ∈ L))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q squash: T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q squash: T prop: subtype_rel: A ⊆B uimplies: supposing a rev_implies:  Q bag-member: x ↓∈ bs exists: x:A. B[x] bag: bag(T) quotient: x,y:A//B[x; y] cand: c∧ B guard: {T}
Lemmas referenced :  bag-member_wf list-subtype-bag squash_wf l_member_wf list_wf member-permutation member_wf permutation_wf equal_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination cumulativity applyEquality because_Cache independent_isectElimination lambdaEquality dependent_functionElimination productElimination independent_pairEquality universeEquality pertypeElimination independent_functionElimination productEquality dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.    (x  \mdownarrow{}\mmember{}  L  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}(x  \mmember{}  L))



Date html generated: 2017_10_01-AM-08_53_44
Last ObjectModification: 2017_07_26-PM-04_35_27

Theory : bags


Home Index