Step * 3 of Lemma bag-member-product


1. Type
2. Type
3. bs bag(B)
4. p1 A
5. p2 B
6. A
7. List
8. p1 ↓∈ v ∧ p2 ↓∈ bs supposing <p1, p2> ↓∈ v × bs
9. <p1, p2> ↓∈ v × bs supposing p1 ↓∈ v ∧ p2 ↓∈ bs
10. p1 ↓∈ {u} v
11. p2 ↓∈ bs
⊢ <p1, p2> ↓∈ bag-map(λx.<u, x>;bs) v × bs
BY
(BagMemberD THEN BagMemberD (-2) THEN RepeatFor (ParallelOp -2) THEN Auto THEN BagMemberD (-2)) }

1
1. Type
2. Type
3. bs bag(B)
4. p1 A
5. p2 B
6. A
7. List
8. p1 ↓∈ v ∧ p2 ↓∈ bs supposing <p1, p2> ↓∈ v × bs
9. <p1, p2> ↓∈ v × bs supposing p1 ↓∈ v ∧ p2 ↓∈ bs
10. p1 u ∈ A
11. p2 ↓∈ bs
⊢ <p1, p2> ↓∈ bag-map(λx.<u, x>;bs)


Latex:


Latex:

1.  A  :  Type
2.  B  :  Type
3.  bs  :  bag(B)
4.  p1  :  A
5.  p2  :  B
6.  u  :  A
7.  v  :  A  List
8.  p1  \mdownarrow{}\mmember{}  v  \mwedge{}  p2  \mdownarrow{}\mmember{}  bs  supposing  <p1,  p2>  \mdownarrow{}\mmember{}  v  \mtimes{}  bs
9.  <p1,  p2>  \mdownarrow{}\mmember{}  v  \mtimes{}  bs  supposing  p1  \mdownarrow{}\mmember{}  v  \mwedge{}  p2  \mdownarrow{}\mmember{}  bs
10.  p1  \mdownarrow{}\mmember{}  \{u\}  +  v
11.  p2  \mdownarrow{}\mmember{}  bs
\mvdash{}  <p1,  p2>  \mdownarrow{}\mmember{}  bag-map(\mlambda{}x.<u,  x>bs)  +  v  \mtimes{}  bs


By


Latex:
(BagMemberD  0  THEN  BagMemberD  (-2)  THEN  RepeatFor  3  (ParallelOp  -2)  THEN  Auto  THEN  BagMemberD  (-2))




Home Index