Nuprl Lemma : bag-member-product
∀[A,B:Type]. ∀[as:bag(A)]. ∀[bs:bag(B)]. ∀[p:A × B].  uiff(p ↓∈ as × bs;fst(p) ↓∈ as ∧ snd(p) ↓∈ bs)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-product: bs × cs
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
empty-bag: {}
, 
top: Top
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
false: False
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
single-bag: {x}
, 
bag-append: as + bs
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_or: a ↓∨ b
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
bag-member_wf, 
bag-product_wf, 
pi1_wf, 
pi2_wf, 
squash_wf, 
bag-product-empty, 
bag-member-empty-iff, 
empty-bag_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
single-bag_wf, 
bag-subtype-list, 
subtype_rel_list, 
top_wf, 
bag-append_wf, 
bag-map_wf, 
list-subtype-bag, 
uiff_wf, 
bag_wf, 
bag_to_squash_list, 
sq_stable__uiff, 
sq_stable__bag-member, 
sq_stable__and, 
list_induction, 
list_wf, 
bag-product-append, 
bag-product-single, 
bag-member-append, 
bag-member-map, 
bag-member-single, 
and_wf, 
equal_wf
Rules used in proof : 
comment, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
cumulativity, 
productElimination, 
independent_pairEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
isect_memberFormation, 
independent_isectElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
applyEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaFormation, 
promote_hyp, 
rename, 
hyp_replacement, 
applyLambdaEquality, 
unionElimination, 
inlFormation, 
dependent_set_memberEquality, 
setElimination, 
inrFormation, 
dependent_pairFormation
Latex:
\mforall{}[A,B:Type].  \mforall{}[as:bag(A)].  \mforall{}[bs:bag(B)].  \mforall{}[p:A  \mtimes{}  B].    uiff(p  \mdownarrow{}\mmember{}  as  \mtimes{}  bs;fst(p)  \mdownarrow{}\mmember{}  as  \mwedge{}  snd(p)  \mdownarrow{}\mmember{}  bs)
Date html generated:
2017_10_01-AM-08_54_39
Last ObjectModification:
2017_07_26-PM-04_36_25
Theory : bags
Home
Index