Nuprl Lemma : bag-member-product

[A,B:Type]. ∀[as:bag(A)]. ∀[bs:bag(B)]. ∀[p:A × B].  uiff(p ↓∈ as × bs;fst(p) ↓∈ as ∧ snd(p) ↓∈ bs)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-product: bs × cs bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q product: x:A × B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] empty-bag: {} top: Top uiff: uiff(P;Q) uimplies: supposing a false: False bag-member: x ↓∈ bs squash: T single-bag: {x} bag-append: as bs append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t) implies:  Q sq_stable: SqStable(P) exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q sq_or: a ↓∨ b or: P ∨ Q guard: {T} cand: c∧ B
Lemmas referenced :  bag-member_wf bag-product_wf pi1_wf pi2_wf squash_wf bag-product-empty bag-member-empty-iff empty-bag_wf list_ind_cons_lemma list_ind_nil_lemma single-bag_wf bag-subtype-list subtype_rel_list top_wf bag-append_wf bag-map_wf list-subtype-bag uiff_wf bag_wf bag_to_squash_list sq_stable__uiff sq_stable__bag-member sq_stable__and list_induction list_wf bag-product-append bag-product-single bag-member-append bag-member-map bag-member-single and_wf equal_wf
Rules used in proof :  comment sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin productEquality cumulativity productElimination independent_pairEquality hypothesis sqequalRule lambdaEquality because_Cache isect_memberEquality voidElimination voidEquality independent_pairFormation isect_memberFormation independent_isectElimination imageElimination imageMemberEquality baseClosed dependent_functionElimination applyEquality universeEquality equalityTransitivity equalitySymmetry independent_functionElimination lambdaFormation promote_hyp rename hyp_replacement applyLambdaEquality unionElimination inlFormation dependent_set_memberEquality setElimination inrFormation dependent_pairFormation

Latex:
\mforall{}[A,B:Type].  \mforall{}[as:bag(A)].  \mforall{}[bs:bag(B)].  \mforall{}[p:A  \mtimes{}  B].    uiff(p  \mdownarrow{}\mmember{}  as  \mtimes{}  bs;fst(p)  \mdownarrow{}\mmember{}  as  \mwedge{}  snd(p)  \mdownarrow{}\mmember{}  bs)



Date html generated: 2017_10_01-AM-08_54_39
Last ObjectModification: 2017_07_26-PM-04_36_25

Theory : bags


Home Index