Nuprl Lemma : bag-product-single

[bs:Top List]. ∀[a:Top].  ({a} × bs bag-map(λx.<a, x>;bs))


Proof




Definitions occuring in Statement :  bag-product: bs × cs bag-map: bag-map(f;bs) single-bag: {x} list: List uall: [x:A]. B[x] top: Top lambda: λx.A[x] pair: <a, b> sqequal: t
Definitions unfolded in proof :  bag-map: bag-map(f;bs) single-bag: {x} bag-product: bs × cs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] empty-bag: {} bag-append: as bs uall: [x:A]. B[x]
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma append_back_nil top_wf map_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction isectElimination productEquality lambdaEquality independent_pairEquality hypothesisEquality sqequalAxiom because_Cache

Latex:
\mforall{}[bs:Top  List].  \mforall{}[a:Top].    (\{a\}  \mtimes{}  bs  \msim{}  bag-map(\mlambda{}x.<a,  x>bs))



Date html generated: 2016_05_15-PM-02_22_52
Last ObjectModification: 2015_12_27-AM-09_54_34

Theory : bags


Home Index