Nuprl Lemma : bag-product-single
∀[bs:Top List]. ∀[a:Top].  ({a} × bs ~ bag-map(λx.<a, x>bs))
Proof
Definitions occuring in Statement : 
bag-product: bs × cs
, 
bag-map: bag-map(f;bs)
, 
single-bag: {x}
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bag-map: bag-map(f;bs)
, 
single-bag: {x}
, 
bag-product: bs × cs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
empty-bag: {}
, 
bag-append: as + bs
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
append_back_nil, 
top_wf, 
map_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
isectElimination, 
productEquality, 
lambdaEquality, 
independent_pairEquality, 
hypothesisEquality, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[bs:Top  List].  \mforall{}[a:Top].    (\{a\}  \mtimes{}  bs  \msim{}  bag-map(\mlambda{}x.<a,  x>bs))
Date html generated:
2016_05_15-PM-02_22_52
Last ObjectModification:
2015_12_27-AM-09_54_34
Theory : bags
Home
Index