Nuprl Lemma : bag-product-empty

[bs:Top]. ({} × bs {})


Proof




Definitions occuring in Statement :  bag-product: bs × cs empty-bag: {} uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  empty-bag: {} bag-product: bs × cs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] uall: [x:A]. B[x]
Lemmas referenced :  list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[bs:Top].  (\{\}  \mtimes{}  bs  \msim{}  \{\})



Date html generated: 2016_05_15-PM-02_22_50
Last ObjectModification: 2015_12_27-AM-09_54_33

Theory : bags


Home Index