Step
*
1
2
1
1
of Lemma
bag-splits-permutation1
.....equality.....
1. T : Type
2. L : T List
3. a : T
4. b : T
5. LL : (bag(T) × bag(T)) List
6. bag-splits(L) = LL ∈ ((bag(T) × bag(T)) List)
7. f1 : (bag(T) × bag(T)) ⟶ (bag(T) × bag(T))
8. (λp.<{b} + (fst(p)), snd(p)>) = f1 ∈ ((bag(T) × bag(T)) ⟶ (bag(T) × bag(T)))
9. f2 : (bag(T) × bag(T)) ⟶ (bag(T) × bag(T))
10. (λp.<{a} + (fst(p)), snd(p)>) = f2 ∈ ((bag(T) × bag(T)) ⟶ (bag(T) × bag(T)))
11. f3 : (bag(T) × bag(T)) ⟶ (bag(T) × bag(T))
12. (λp.<fst(p), {a} + (snd(p))>) = f3 ∈ ((bag(T) × bag(T)) ⟶ (bag(T) × bag(T)))
13. f4 : (bag(T) × bag(T)) ⟶ (bag(T) × bag(T))
14. (λp.<fst(p), {b} + (snd(p))>) = f4 ∈ ((bag(T) × bag(T)) ⟶ (bag(T) × bag(T)))
⊢ map(f3 o f1;LL) = map(f1 o f3;LL) ∈ ((bag(T) × bag(T)) List)
BY
{ (EqCD
THEN Auto
THEN Unfold `compose` 0
THEN (EqCD THENA Auto)
THEN (SubstFor ⌜f3⌝ 0⋅ THENA Auto)
THEN (SubstFor ⌜f1⌝ 0⋅ THENA Auto)
THEN Reduce 0
THEN EqCD
THEN Auto)⋅ }
Latex:
Latex:
.....equality.....
1. T : Type
2. L : T List
3. a : T
4. b : T
5. LL : (bag(T) \mtimes{} bag(T)) List
6. bag-splits(L) = LL
7. f1 : (bag(T) \mtimes{} bag(T)) {}\mrightarrow{} (bag(T) \mtimes{} bag(T))
8. (\mlambda{}p.<\{b\} + (fst(p)), snd(p)>) = f1
9. f2 : (bag(T) \mtimes{} bag(T)) {}\mrightarrow{} (bag(T) \mtimes{} bag(T))
10. (\mlambda{}p.<\{a\} + (fst(p)), snd(p)>) = f2
11. f3 : (bag(T) \mtimes{} bag(T)) {}\mrightarrow{} (bag(T) \mtimes{} bag(T))
12. (\mlambda{}p.<fst(p), \{a\} + (snd(p))>) = f3
13. f4 : (bag(T) \mtimes{} bag(T)) {}\mrightarrow{} (bag(T) \mtimes{} bag(T))
14. (\mlambda{}p.<fst(p), \{b\} + (snd(p))>) = f4
\mvdash{} map(f3 o f1;LL) = map(f1 o f3;LL)
By
Latex:
(EqCD
THEN Auto
THEN Unfold `compose` 0
THEN (EqCD THENA Auto)
THEN (SubstFor \mkleeneopen{}f3\mkleeneclose{} 0\mcdot{} THENA Auto)
THEN (SubstFor \mkleeneopen{}f1\mkleeneclose{} 0\mcdot{} THENA Auto)
THEN Reduce 0
THEN EqCD
THEN Auto)\mcdot{}
Home
Index