Nuprl Lemma : bag-splits-permutation1
∀T:Type. ∀L:T List. ∀a,b:T.  permutation(bag(T) × bag(T);bag-splits([a; [b / L]]);bag-splits([b; [a / L]]))
Proof
Definitions occuring in Statement : 
bag-splits: bag-splits(b)
, 
bag: bag(T)
, 
permutation: permutation(T;L1;L2)
, 
cons: [a / b]
, 
list: T List
, 
all: ∀x:A. B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
bag-splits: bag-splits(b)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
bag-append: as + bs
, 
bag-map: bag-map(f;bs)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
compose: f o g
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_ind_cons_lemma, 
bag-splits_wf_list, 
list_wf, 
bag_wf, 
equal_wf, 
append_assoc_sq, 
map_append_sq, 
bag-append_wf, 
single-bag_wf, 
pi1_wf, 
pi2_wf, 
append_functionality_wrt_permutation, 
map_wf, 
append_wf, 
permutation_weakening, 
bag-append-assoc-comm, 
iff_weakening_equal, 
map-map, 
permutation_wf, 
compose_wf, 
squash_wf, 
true_wf, 
permutation-rotate
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
isectElimination, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeEquality, 
comment, 
lambdaEquality, 
independent_pairEquality, 
productElimination, 
functionEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}T:Type.  \mforall{}L:T  List.  \mforall{}a,b:T.
    permutation(bag(T)  \mtimes{}  bag(T);bag-splits([a;  [b  /  L]]);bag-splits([b;  [a  /  L]]))
Date html generated:
2017_10_01-AM-08_59_54
Last ObjectModification:
2017_07_26-PM-04_41_54
Theory : bags
Home
Index