Nuprl Lemma : bag-splits-permutation1

T:Type. ∀L:T List. ∀a,b:T.  permutation(bag(T) × bag(T);bag-splits([a; [b L]]);bag-splits([b; [a L]]))


Proof




Definitions occuring in Statement :  bag-splits: bag-splits(b) bag: bag(T) permutation: permutation(T;L1;L2) cons: [a b] list: List all: x:A. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] bag-splits: bag-splits(b) so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] uall: [x:A]. B[x] implies:  Q bag-append: as bs bag-map: bag-map(f;bs) prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a compose: g pi1: fst(t) pi2: snd(t) squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_ind_cons_lemma bag-splits_wf_list list_wf bag_wf equal_wf append_assoc_sq map_append_sq bag-append_wf single-bag_wf pi1_wf pi2_wf append_functionality_wrt_permutation map_wf append_wf permutation_weakening bag-append-assoc-comm iff_weakening_equal map-map permutation_wf compose_wf squash_wf true_wf permutation-rotate
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis cumulativity hypothesisEquality isectElimination productEquality equalityTransitivity equalitySymmetry independent_functionElimination universeEquality comment lambdaEquality independent_pairEquality productElimination functionEquality because_Cache functionExtensionality applyEquality independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality

Latex:
\mforall{}T:Type.  \mforall{}L:T  List.  \mforall{}a,b:T.
    permutation(bag(T)  \mtimes{}  bag(T);bag-splits([a;  [b  /  L]]);bag-splits([b;  [a  /  L]]))



Date html generated: 2017_10_01-AM-08_59_54
Last ObjectModification: 2017_07_26-PM-04_41_54

Theory : bags


Home Index